

lightsteem

Lightsteem is a light python client to interact with the STEEM blockchain.
It’s simple and stupid. It doesn’t interfere the process between the developer
and the STEEM node.

[image: _images/48bc553d1a2ddaa551bcdd2528424250a78b7217.png]

Features

	No hard-coded methods. All potential future appbase methods are automatically supported.

	Retry and Failover support for node errors and timeouts. See Retry and Failover.

Limitations

	No support for pre-appbase nodes.

	No magic methods and encapsulation over well-known blockchain objects. (Comment, Post, Account, etc.)

Installation

Lightsteem requires python3.6 and above. Even though it’s easy to make it compatible
with lower versions, it’s doesn’t have support by design to keep the library simple.

You can install the library by typing to your console:

$ (sudo) pip install lightsteem

After that, you can continue with Getting Started.

Documentation Pages

	Getting Started
	Examples

	Optional parameters of Client

	Retry and Failover

	Broadcasting Transactions
	Example: Account Witness Vote

	Example: Voting for a Post

	Example: Creating a Post (main Comment)

	Example: Creating a transfer

	Example: Bundling Operations

	Example: Using convert function for SBDs

	Batch RPC Calls

	Helpers

	Account helper
	Getting account history

	Getting account followers

	Getting account followings

	Getting account ignorers (Muters)

	Getting account ignorings (Muted list)

	Getting voting power

	Getting resource credits

	Getting account reputation

	Amount helper

	EventListener Helper

	ResourceCredits Helper

Getting Started

Client class is the primary class you will work with.

from lightsteem.client import Client

client = Client()

Appbase nodes support different api namespaces [https://developers.steem.io/apidefinitions/#apidefinitions-condenser-api].

Client class uses condenser_api as default. Follow the official developer portal’s api definitions [https://developers.steem.io/apidefinitions/]
to explore available methods.

Examples

Get Dynamic Global Properties

props = client.get_dynamic_global_properties()

print(props)

Get Current Reserve Ratio

ratio = c('witness_api').get_reserve_ratio()

print(ratio)

Get @emrebeyler’s account history

history = c.get_account_history("emrebeyler", 1000, 10)

for op in history:
 print(op)

Get top 100 witness list

witness_list = client.get_witnesses_by_vote(None, 100)

print(witness_list)

It’s the same convention for every api type and every call on appbase nodes.

Important

Since, api_type is set when the client instance is called, it is not thread-safe to share Client instances between threads.

Optional parameters of Client

Even though, you don’t need to pass any parameters to the Client, you have some options
to choose.

	
__init__(self, nodes=None, keys=None, connect_timeout=3,

	
read_timeout=30, loglevel=logging.ERROR, chain=None)

	
	Parameters

	
	nodes – A list of appbase nodes. (Defaults: api.steemit.com, appbase.buildteam.io.)

	keys – A list of private keys.

	connect_timeout – Integer. Connect timeout for nodes. (Default:3 seconds.)

	read_timeout – Integer. Read timeout for nodes. (Default: 30 seconds.)

	loglevel – Integer. (Ex: logging.DEBUG)

	chain – String. The blockhain we’re working with. (Default: STEEM)

See Broadcasting Transactions to find out how to broadcast transactions into the blockchain.

Retry and Failover

The workflow on retry and failover:

	Send a request to the RPC node

	If the node returns an HTTP status between *400 and 600 or had a timeout, retry the request up to times.

	Sleep time between cycles has an exponential backoff.

	If the node still can’t respond, switch tho next available node until exhausting the node list.

	If all nodes are down or giving errors, and the system is out of options, the original exception is raised.

Broadcasting Transactions

Since Lightsteem supports transaction signing out of the box, you only need to
define the operations you want to broadcast.

A typical transaction on STEEM blockchain consists of these fields:

{
 "ref_block_num": "..",
 "ref_block_prefix": "..",
 "expiration": "..",
 "operations": [OperationObject,],
 "extensions": [],
 "signatures": [Signature1,],
}

As a library user, you don’t need to build the all these information yourself. Since all keys except operations
can be generated automatically, Lightsteem only asks for a list of operations.

Example: Account Witness Vote

from lightsteem.client import Client
from lightsteem.datastructures import Operation

c = Client(
 keys=["<private_key>",])

op = Operation('account_witness_vote', {
 'account': '<your_account>',
 'witness': 'emrebeyler',
 'approve': True,
 })

c.broadcast(op)

Example: Voting for a Post

This will vote with a %1. Percent / 100 = Weight. If you want to downvote,
use negative weight.

from lightsteem.client import Client
from lightsteem.datastructures import Operation

client = Client(
 keys=["<private_key>"]
)

op = Operation('vote', {
 "voter": "emrebeyler",
 "author": "emrebeyler",
 "permlink": "re-hitenkmr-actifit-ios-app-development-contribution-20180816t105311829z",
 "weight": 100,
})

client.broadcast(op)

Example: Creating a Post (main Comment)

import json

from lightsteem.client import Client
from lightsteem.datastructures import Operation

client = Client(
 keys=["<posting_key>"]
)

post = Operation('comment', {
 "parent_author": None,
 "parent_permlink": "steemit",
 "author": "emrebeyler",
 "permlink": "api-steemit-is-down",
 "title": "api.steemit.com is down",
 "body": "Body of the post",
 "json_metadata": json.dumps({"tags": "steemit steem lightsteem"})
})

resp =client.broadcast(post)

print(resp)

Posts are actually Comment objects and same with replies. This example
creates a main comment (Post) on the blockchain.

Notes:

	parent_author should be None for posts.

	parent_permlink should be the first tag you use in the post.

If you fill parent_author and parent_permlink with actual post information, you will
have a reply. (comment)

Example: Creating a transfer

from lightsteem.client import Client
from lightsteem.datastructures import Operation

c = Client(
 keys=["active_key",])

op = Operation('transfer', {
 'from': 'emrebeyler',
 'to': '<receiver_1>',
 'amount': '0.001 SBD',
 'memo': 'test1!'
 })

c.broadcast(ops)

Example: Bundling Operations

It’s also possible to bundle multiple operations into one transaction:

from lightsteem.client import Client
from lightsteem.datastructures import Operation

c = Client(
 keys=["active_key",])

ops = [
 Operation('transfer', {
 'from': 'emrebeyler',
 'to': '<receiver_1>',
 'amount': '0.001 SBD',
 'memo': 'test1!'
 }),
 Operation('transfer', {
 'from': 'emrebeyler',
 'to': '<receiver_2>',
 'amount': '0.001 SBD',
 'memo': 'test2!'
 }),

]

c.broadcast(ops)

Example: Using convert function for SBDs

from lightsteem.client import Client
from lightsteem.datastructures import Operation

client = Client(
 keys=["<active_key>"]
)
client.broadcast(
 Operation('convert', {
 "owner": "emrebeyler,
 "amount": "0.500 SBD",
 "requestid": 1,
 })
)

Note: requestid and the owner is unique together.

Important

Since, lightsteem doesn’t introduce any encapsulation on operations, you are responsible to create operation data yourself. To find out the specs for each operation, you may review the block explorers for raw data or the source code of steemd.

Batch RPC Calls

Appbase nodes support multiple RPC calls in one HTTP request. (Maximum is 50.). If you want
to take advantage of this:

from lightsteem.client import Client

c = Client()

c.get_block(24858937, batch=True)
c.get_block(24858938, batch=True)

blocks = c.process_batch()

print(blocks)

This will create one request, but you will have two block details.

Important

This feature is not thread-safe. Every instance has a simple queue (list) as their property, and it’s flushed every time the process_batch is called.

Helpers

Lightsteem has a target to define helper classes for well known blockchain objects. This is
designed in that way to prevent code repeat on client (library user) side.

It’s possible to use lightsteem for just a client. However, if you need to get an
account’s history, or get followers of account, you may use the helpers module.

Account helper

This class defines an Account in the STEEM blockchain.

from lightsteem.client import Client
c = Client()
account = c.get_account('emrebeyler')

When you execute that script in your REPL, lightsteem makes a RPC call to get the account data
from the blockchain. Once you initialized the Account instance, you have access to these helper methods:

Getting account history

With this method, you can traverse entire history of a STEEM account.

	
history(self, account=None, limit=1000, filter=None, exclude=None,

	
order="desc", only_operation_data=True,

	
start_at=None, stop_at=None):

	
	Parameters

	
	account – (string) The username.

	limit – (integer) Batch size per call.

	filter – (list:string) Operation types to filter

	exclude – (list:s tring) Operation types to exclude

	order – (string) asc or desc.

	only_operation_data – (bool) If false, returns in the raw format. (Includes transaction information.)

	start_at – (datetime.datetime) Starts after that time to process ops.

	stop_at – (datetime.datetime) Stops at that time while processing ops.

account_history is an important call for the STEEM applications. A few use cases:

	Getting incoming delegations

	Filtering transfers on specific accounts

	Getting author, curation rewards

etc.

Example: Get all incoming STEEM of binance account in the last 7 days

import datetime

from lightsteem.client import Client
from lightsteem.helpers.amount import Amount

client = Client()
account = client.account('deepcrypto8')

one_week_ago = datetime.datetime.utcnow() -
 datetime.timedelta(days=7)
total_steem = 0
for op in account.history(
 stop_at=one_week_ago,
 filter=["transfer"]):

 if op["to"] != "deepcrypto8":
 continue

 total_steem += Amount(op["amount"]).amount

print("Total STEEM deposited to Binance", total_steem)

Getting account followers

from lightsteem.client import Client

client = Client()
account = client.account('deepcrypto8')

print(account.followers())

Output will be a list of usernames. (string)

Getting account followings

from lightsteem.client import Client

client = Client()
account = client.account('emrebeyler')

print(account.following())

Output will be a list of usernames. (string)

Getting account ignorers (Muters)

from lightsteem.client import Client

client = Client()
account = client.account('emrebeyler')

print(account.ignorers())

Getting account ignorings (Muted list)

from lightsteem.client import Client

client = Client()
account = client.account('emrebeyler')

print(account.ignorings())

Getting voting power

This helper method determines the account’s voting power. In default, It considers
account’s regenerated VP. (Actual VP)

If you want the VP at the time the last vote casted, you can pass consider_regeneration=False.

from lightsteem.client import Client

client = Client()
account = client.account('emrebeyler')

print(account.vp())
print(account.vp(consider_regeneration=False))

Getting resource credits

This helper method determines the account’s resource credits in percent. In default, It considers
account’s regenerated RC. (Actual RC)

If you want the Rc at the time the last vote casted, you can pass consider_regeneration=False.

from lightsteem.client import Client

client = Client()
account = client.account('emrebeyler')

print(account.rc())
print(account.rc(consider_regeneration=False))

Getting account reputation

from lightsteem.client import Client

client = Client()
account = client.account('emrebeyler')

print(account.reputation())

Default precision is 2. You can set it by passing precision=N parameter.

Amount helper

A simple class to convert “1234.1234 STEEM” kind of values to Decimal.

from lightsteem.helpers.amount import Amount

amount = Amount("42.5466 STEEM")

print(amount.amount)
print(amount.symbol)

EventListener Helper

EventListener is a helper class to listen specific operations (events) on the
blockchain.

Stream blockchain for the incoming transfers related to a specific account

from lightsteem.helpers.event_listener import EventListener
from lightsteem.client import Client

client = Client()
events = EventListener(client)

for transfer in events.on('transfer', filter_by={"to": "emrebeyler"}):
 print(transfer)

Stream for incoming vote actions

events = EventListener(client)

for witness_vote in events.on('account_witness_vote', filter_by={"witness": "emrebeyler"}):
 print(witness_vote)

Conditions via callables

Stream for the comments and posts tagged with utopian-io.

from lightsteem.client import Client
from lightsteem.helpers.event_listener import EventListener

import json

c = Client()
events = EventListener(c)

def filter_tags(comment_body):
 if not comment_body.get("json_metadata"):
 return False

 try:
 tags = json.loads(comment_body["json_metadata"])["tags"]
 except KeyError:
 return False
 return "utopian-io" in tags

for op in events.on("comment", condition=filter_tags):
 print(op)

EventListener class also has

	start_block

	end_block

params that you can limit the streaming process into specific blocks.

ResourceCredits Helper

ResourceCredits class has a simple helper function to get RC costs on specific
operations.

For example, if you want to learn about how much resource credit will be exhausted
for an account_claim operation:

from lightsteem.client import Client
from lightsteem.datastructures import Operation

client = Client(keys=[<your_active_key>])

op = Operation(
 'claim_account',
 {
 "creator": "emrebeyler",
 "fee": "0.000 STEEM",
 "extensions": [],
 }
)

print(client.rc().get_cost(op))

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 lightsteem

 		
 Getting Started

 		
 Examples

 		
 Optional parameters of Client

 		
 Retry and Failover

 		
 Broadcasting Transactions

 		
 Example: Account Witness Vote

 		
 Example: Voting for a Post

 		
 Example: Creating a Post (main Comment)

 		
 Example: Creating a transfer

 		
 Example: Bundling Operations

 		
 Example: Using convert function for SBDs

 		
 Batch RPC Calls

 		
 Helpers

 		
 Account helper

 		
 Getting account history

 		
 Getting account followers

 		
 Getting account followings

 		
 Getting account ignorers (Muters)

 		
 Getting account ignorings (Muted list)

 		
 Getting voting power

 		
 Getting resource credits

 		
 Getting account reputation

 		
 Amount helper

 		
 EventListener Helper

 		
 ResourceCredits Helper

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/48bc553d1a2ddaa551bcdd2528424250a78b7217.png
3. IPython: private/tmp (python3.6)
lightsteem.client
c = ClientO

c.get_dynamic_global_properties(Q[
'pharesim’

_static/ajax-loader.gif

